2x^2=x^2+367

Simple and best practice solution for 2x^2=x^2+367 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x^2=x^2+367 equation:



2x^2=x^2+367
We move all terms to the left:
2x^2-(x^2+367)=0
We get rid of parentheses
2x^2-x^2-367=0
We add all the numbers together, and all the variables
x^2-367=0
a = 1; b = 0; c = -367;
Δ = b2-4ac
Δ = 02-4·1·(-367)
Δ = 1468
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1468}=\sqrt{4*367}=\sqrt{4}*\sqrt{367}=2\sqrt{367}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{367}}{2*1}=\frac{0-2\sqrt{367}}{2} =-\frac{2\sqrt{367}}{2} =-\sqrt{367} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{367}}{2*1}=\frac{0+2\sqrt{367}}{2} =\frac{2\sqrt{367}}{2} =\sqrt{367} $

See similar equations:

| 0.35x/0.25x+1.8=1.2/3.8 | | 17x+1/2=-1/2+16x | | -5x-1=3-9x | | 7n=7n=0 | | 0=n^2-7n-6 | | 2a^+6a=20 | | 11x-23+49=180 | | x/(5)=12 | | 4x-8=5x-8 | | 6p+(5p+5)=-8-2(1p+12) | | 10y+-9=10 | | 285=47-w | | (11x)=70 | | 12x–3x+4=5x–16 | | 5.8×x=7.93 | | (11x)=77 | | 12+3x-11=37 | | 8×n=-96 | | 128+82+40+x=360 | | 8×n=-56 | | 10=-9x+10Y | | 3125x=−62/ | | 20-6p=22 | | 8x+12=1-5x | | -2(3x+5)-2x=5x+6-1 | | P-7p=-4p | | 13x=16x-12 | | 14y=48 | | 2(3x-4)=3x+1+x | | 2t(t+6=0 | | -2(3x+5)-2x=5x+30-1 | | 110=2x+2(2x-5) |

Equations solver categories